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SUBJECT: (U) Second-Order Sensitivity Analysis of Uncollided Particle Contributions to 
Radiation Detector Responses Using Ray-Tracing 

 
I. Introduction 
 

The Second-Level Adjoint Sensitivity System (2nd-LASS) that yields the second-order sensitivities 
of a response of uncollided particles with respect to isotope densities, cross sections, and source 
emission rates is derived in Refs. 1 and 2. In Ref. 2, we solved problems for the uncollided leakage from 
a homogeneous sphere and a multiregion cylinder using the PARTISN multigroup discrete-ordinates 
code.3 In this memo, we derive solutions of the 2nd-LASS for the particular case when the response is a 
flux or partial current density computed at a single point on the boundary, and the inner products are 
computed using ray-tracing.4,5,6 Both the PARTISN approach and the ray-tracing approach are 
implemented in a computer code, SENSPG. 

 
The next section of this report presents the equations of the 1st- and 2nd-LASS for uncollided 

particles and the first- and second-order sensitivities that use the solutions of the 1st- and 2nd-LASS. 
Section III presents solutions of the 1st- and 2nd-LASS equations for the case of ray-tracing from a 
detector point. Section IV presents specific solutions of the 2nd-LASS and derives the ray-trace form of 
the inner products needed for second-order sensitivities. Numerical results for the total leakage from a 
homogeneous sphere are presented in Sec. V and for the leakage from one side of a two-region slab in 
Sec. VI. Section VII is a summary and conclusions. 

 
II. Equations of the 1st- and 2nd-LASS for Uncollided Particles  

 
This section summarizes results derived by Cacuci.1  
 
II.A. 1st LASS  
 
The forward equation in the 1st LASS is  

4t

q 


  
(r)

Ω (r,Ω) (r) (r,Ω)  

with the vacuum boundary condition 

(1)
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 , 0, , 0.s s V      r Ω r Ω n  

The adjoint equation in the 1st LASS is  
1 1

t d      ( ) ( )Ω (r,Ω) (r) (r,Ω) (r,Ω)  

with the vacuum boundary condition 

 (1) , 0, , 0.s s V      r Ω r Ω n  

First-order sensitivities of a response R with respect to the Nm isotope number densities, cross sections, 
and source emission rates are given by inner products of the solutions of the 1st-LASS: 

           
     
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         1 1 1
2 4

1
mi N i i m
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R
S N dV d g i N

q 
 


 

  (α; ) Ω r,Ω r , , ..., .  

In Eqs. (5), (6), and (7),  if r  and  ig r  represent the piecewise spatially constant distributions of the 

cross sections and source emission rates, respectively, of isotope i. The density derivatives here and 
everywhere in this paper are constant-volume partial derivatives.7 

 

II.B. 2nd-LASS Equations for Second-Order Sensitivities  
2

2 1 1i j m m
i j

R
S i N j N

N 


 
 , , , ..., , , ...,  

The 2nd-level adjoint functions  2
1 i ,  and  2

2 i ,  are the solutions of the following 2nd-LASS: 
               2 2
1 1 1i t i i i i i mf q g i N        , ,Ω r,Ω r r,Ω r r,Ω r , , ..., ,  

   2
1, , 0, , 0i s s V      r Ω r Ω n , 

               2 2 1
2 2 1i t i i i mf i N         , ,Ω r,Ω r r,Ω r r,Ω , , ..., ,  

   2
2, , 0, , 0i s s V      r Ω r Ω n . 

The 2nd-order mixed partial sensitivities (that include Ni) of the response R with respect to the model 
parameters are 

                 
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II.C. 2nd-LASS Equations for Second-Order Sensitivities  
2

2 1 1
mi N j m m

i j

R
S i N j N

 


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 , , , ..., , , ...,  

The 2nd-level adjoint functions  2
1 mi N ,  and  2

2 mi N ,  are the solutions of the following 2nd-LASS: 
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   2
2, , 0, , 0

mi N s s V       r Ω r Ω n . 

The 2nd-order mixed partial sensitivities (that include σi) of the response R with respect to the model 
parameters are 
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II.D. 2nd-LASS Equations for Second-Order Sensitivities  
2
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The 2nd-level adjoint function  2
1 2 mi N ,  is the solution of the following 2nd-LASS: 
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Note also that  2
2 2 0

mi N  , . The 2nd-order mixed partial sensitivities (that include qi) of the response R 

with respect to the model parameters are 
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III. Solutions of the 1st- and 2nd-LASS for Ray-Tracing from a Point Detector 

 
III.A. 1st-LASS Forward Equation 
 
Identify Ω (r,Ω)  as the directional derivative of (r,Ω)  at r  in direction Ω .8 Then Eq. (1) can 

be written5 

4t

r q r
r r

r

 



 


( ,Ω) ( )

( ) ( ,Ω) ,  

where r measures the distance along the ray in direction Ω . Equation (27) is equivalent to Eq. (1) 
provided that an arbitrary point in space r  can be mapped to a unique point r along the unique ray in 
direction Ω  that passes through r .  
 

For this application, we only solve for particle directions that intersect a detector point dr  on the 

system boundary. Thus, for this application, a ray-trace solution of Eq. (1) is not a full solution for all 
points r  and angles Ω . It is a solution for all points r  but only certain angles, designated Ωd  to 

emphasize that they are the angles along which rays intersect the detector. It is possible to solve Eq. (1) 
at an arbitrary point r  and angle Ω  using ray-tracing, but that solution will not be derived or used here. 

 
Assuming the medium is composed of homogeneous regions k with cross section and source rate 

density t k ,  and kq , respectively, Eq. (27) is (for the subset of angles Ωd )  

1
4

d k
t k d

r q
r k K

r







    
 ,

( ,Ω )
( ,Ω ) , , , ,  

(27)

 
Figure 1. Ray-tracing in an arbitrary geometry. Adapted from Ref. 4. Copyright 2009 by the American 
Nuclear Society, LaGrange Park, Illinois. 

(28)
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where r is the distance along the ray in direction Ωd  and K is the number of homogeneous regions the 

ray transits (not the number of homogeneous regions in the medium). Multiple traverses of a single 
region are counted separately. See Fig. 1, in which K = 8 for the ray shown.  
 

Applying the integrating factor , ( )t k kr re    yields 

 
4

t k k t k kr r r r k
d

q
e r e

r



    




, ,( ) ( )( ,Ω ) .  

Clearly, the distance kr r   depends on the angles θ and ω defining Ωd  (see Fig. 1), so the functional 

dependence is suppressed. Integrating Eq. (29) yields 

4

4

t k k t k k

t k k

r r r rk
d

r rk

t k

q
e r dr e C

q
e C






 



   

 

 

 


, ,

,

( ) ( )

( )

,

( ,Ω )

.
 

Dividing through by the integrating factor yields 

4
t k kr rk

d
t k

q
r C e


  


, ( )

,

( ,Ω ) .  

Designate the 1st-LASS forward flux entering region k in direction Ωd  as ( ,Ω )k dr  . Using kr r   in 

Eq. (31) and rearranging yields 

4
k

k d
t k

q
C r

 
 ,

( ,Ω ) .  

Using Eq. (32) in Eq. (31) and rearranging yields 

 1
4

t k k t k kr r r rk
d k d

t k

q
r e r e 


    

  


, ,( ) ( )

,

( ,Ω ) ( ,Ω ) .  

The boundary condition, given by applying Eq. (2) to Fig. 1, completes the solution: 

1 0dr  ( ,Ω ) .  

For Eq. (27), the boundary is the point at which the ray enters the system in direction Ωd .  

 
The quantity of interest is a detector response, denoted as  ,R  α , where α denotes the vector of 

input parameters, of the form  

     
4

,α Ω r,Ω r,Ω ,dR dV d


     

where  d r,Ω  models the interaction of the detector with the incident particles. Detector responses of 

particular interest are: (i) the scalar flux at a point, in which case the detector-interaction function has the 
form  

   d d  r,Ω r r , 

where dr  represents the detector’s location, and (ii) the partial current density at a point, in which case 

the detector-interaction function has the form 
   d d   r,Ω Ω n r r ,  

where n  is a unit vector normal to the unit area at dr  through which the partial current density is to be 

calculated. Although Eq. (35) is an integral over all angles (4π), only those rays passing through dr  will 

contribute. 

(29)

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)
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III.B. 1st-LASS Adjoint Equation 
 
In the adjoint case, Eqs. (3) and (4), source particles only flow towards the detector point dr . Thus, 

for this application, a ray-trace solution of Eq. (3) is a full solution for all points r  and angles Ω . 
Nevertheless, we continue to denote the angle as Ωd  to emphasize that we only consider angles along 

which rays intersect the detector point. 
 
Considering only angles that intersect the detector point, noting that adjoint particles travel 

backwards, and recognizing that the adjoint source within the system volume is zero [Eqs. (36) and 
(37)], Eq. (3) is written (for the subset of angles Ωd ) 

1
1 0 1d

t k d

r
r k K

r





   



( )
( )

,

( ,Ω )
( ,Ω ) , , , ,  

where r is the distance along the ray in direction dΩ  and K is the number of homogeneous regions the 

ray transits. Designating the 1st-LASS adjoint flux entering region k in direction dΩ  as 1( ) ( ,Ω )k dr  , 

the solution of Eq. (38) is 
   1 1, ( )( ,Ω ) ( ,Ω ) .t k kr r

d k dr e r  
  

Clearly, the distance kr r   depends on the angles θ and ω defining Ωd  (see Fig. 1), so the functional 

dependence is suppressed. The boundary condition, given by applying Eqs. (36) and (37) to Fig. 1, 
completes the solution: 

   1 d K d
K d

d

r
r 







,Ω

( ,Ω ) .
Ω n

 

For Eq. (38), the boundary is the point at which the ray enters the system in direction dΩ .  

 
The response  ,R  α  is also given by the dual of Eq. (35):9  

     1

4 4

q
R dV d


 


  

(r)
,α Ω r,Ω .  

Although Eq. (41) is an integral over all angles (4π), the adjoint flux is only nonzero for angles Ωd . 

Thus, only those rays passing through dr  will contribute to the response, as for Eq. (35).  

 
III.C. Uncollided Leakage and Flux on a Homogeneous Sphere 
 
The total uncollided leakage from a homogeneous sphere is found using chord-length theory in 

Ref. 4 (the derivation of Ref. 4 is repeated in Ref. 10). Here we derive the total uncollided leakage using 
ray-tracing. The sphere has radius a, macroscopic cross section Σ, and source rate density q.  

 
Start with Eq. (28) with K = 1. Its solution is Eq. (33) with 1( , ) 0 :dr  Ω  

 1( )( , ) 1 .
4

r r
d

q
r e


  


Ω  

The angular flux in direction dΩ  at the detector location dr , which is a point on the surface of the 

sphere, is 

(38)

(39)

(40)

(41)

(42)
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 1( )( , ) 1 .
4

dr r
d d

q
r e


  


Ω  

 
Clearly, the distance 1dr r  , the path length through the sphere along the ray dΩ , depends on the 

angles θ and ω defining Ωd  (see Fig. 1). For each ray dΩ , we compute this distance in any convenient 

coordinate system. For spherical symmetry, we don’t need the polar angle cosine ω. Let  
,nΩ  d  

where n  is the outward unit normal from the sphere at the detector point. See Fig. 2, where 1dd r r    

and it is clear that  
2d

a
   

and therefore 
2 .d a  

Using Eq. (46), Eq. (43) becomes 

 21
4

a
d d

q
r e 


  


( ,Ω ) .  

 
The partial current density dJ r( )  at the detector point is the angular flux multiplied by the surface-

crossing cosine and integrated over all exiting angles:5 

 

 

2 1

0 0

2 1 2

0 0

1 2

0

1
4

1
2

d d

a

a

J r d d r

q
d d e

q
d e



 



  

  


 



 

 



 


 


 

 



( ) ( ,Ω )

.

 

  

(43)

(44)

(45)

(46)

(47)

 
Figure 2. Ray-tracing in a homogeneous sphere.  

(48)
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Using the Wolfram on-line integrator11 for the integral yields 
11 2

2
2

0 0

2

2 2

2
2

2 2 2

1 1 2

2 2 2

1 1 2 1

2 2 2 2

1 1 1 2
2

8

a

d

a

a

q a e
J r

a

q a e

a a

q a e
a

a


 



 

 

               
  

      
  

      

( )
( )

( )

( )

( ) ( )

( )
.

 

 
The total leakage L from the sphere is the integral of ( )dJ r  [Eq. (49)] on the surface. Since ( )dJ r  

is a constant on the surface of the one-dimensional sphere, this integration amounts to multiplying 
Eq. (49) by the surface area of the sphere to obtain 

2

2
2

2 2

4

1 1 2
2

2

d

a

L a J r

q a e
a






 



  
      

( )

( )
,
 

which is the same as Eq. (142) in Ref. 2.  
 
Equation (142) in Ref. 2 can also be derived by ray-tracing the 1st-LASS adjoint flux [Eq. (41)]. The 

response function for the leakage, using 1dr r r    to designate a point on the surface, is 

 d d d dr  ,Ω Ω n . From Eqs. (39) and (40), the adjoint is 
 1 t k dr r

dr e   , ( )( ,Ω ) .  

From Eq. (41), the partial current density at dr r  is 

 

1

1

4

1

2

1

0 0

1

0

0
4

4

2
1

1
2

dr

d d r

d r

d

q
J dV d r

q
d dr r

q
d dr e

q
d e











 

 











 



 


 

 

 



( )

( )

(Ω)

( ) Ω ( ,Ω)

Ω Ω n ( ,Ω)

.

 

Use Eq. (46) for d, evaluate the integral, and integrate over the surface of the sphere to obtain Eq. (50), 
which is the same as Eq. (142) in Ref. 2. 

 
Chilton et al. derive the uncollided scalar flux at a point on the surface of a homogeneous sphere 

using the detector response at the center of a spherical surface source.12 Here we do it using ray-tracing. 
Equation (47) gives the uncollided angular flux at a point on the surface (the detector point). The 
uncollided scalar flux at the detector point is, in akin with Eq. (48), 

(49)

(50)

(51)

(52)
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 

 

2 1

0 0

2 1 2

0 0

1 2

0

1
4

1
2

d d

a

a

r d d r

q
d d e

q
d e



 



  

 




 

 



 


 


 

 



( ) ( ,Ω )

.

 

Evaluating the integral yields  

 21
1 1

2 2
a

d

q
r e

a
        

( ) ,  

which is Chilton et al.’s Eq. (6.99) when their 1 4R ˆ ( ) . Equation (54) can also be derived using the 
uncollided 1st-LASS adjoint flux and Eq. (41).  

 
III.D. 2nd LASS Forward Equation 
 
Equations (8), (15), and (22) may be written  

               2 2 2 2
1 1 1 1t a bQ Q      ( ) ( )

, ,Ω r,Ω r r,Ω r r,Ω r ,  

with boundary condition 
   2
1 , 0, , 0.s s V      r Ω r Ω n  

We solve Eq. (55) along a particular ray from rmax to rd in material region k (see Fig. 1). In this case, 
Eq. (55) becomes (for the subset of angles Ωd ) 

 
 

2
2 2 21

1 1 1 1d
t k d a k d b k

r
r Q r Q k K

r


 


     


( ) ( )

, , , , ,

( ,Ω )
( ,Ω ) ( ,Ω ) , , , ,  

where r is the distance along the ray in direction Ωd . The 1st-LASS forward flux dr( ,Ω )  along the ray 

within region k is given by Eq. (33). 
 

It is convenient to solve Eq. (57) separately for each source. For the first source on the right side 
(subscript a), using Eq. (33) in Eq. (57) and using the integrating factor , ( )t k kr re    yields 

    2 2
1 1 1

4
t k k t k kr r r rk

a d a k k d
t k

q
e r Q e r

r
 


    



          
, ,( ) ( )( )

, , ,
,

( ,Ω ) ( ,Ω ) .  

Clearly, the distance kr r   depends on the angles θ and ω defining Ωd  (see Fig. 1), so the functional 

dependence is suppressed. Integrating Eq. (58) yields  

   2 2
1 1

2
1

2
1 2

1
4

4

4

t k k t k k

t k k

t k k

r r r rk
a d a k k d a

t k

r r
k

a k k k k d a
t k t k

r rk
a k

t k

q
e r Q dr e dr r C

q e
Q r r r r r C

q q
Q e

 







 





   


 

  

 

         
                

  


 , ,

,

,

( ) ( )( )
, , ,

,

( )
( )
, ,

, ,

( )( )
, ,

,

( ,Ω ) ( ,Ω )

( ) ( ) ( ,Ω )

4
k

k d k a
t k

r r r C
  

           ,

( ,Ω ) ( ) .

 

Dividing through by the integrating factor yields 

(53)

(54)

(55)

(56)

(57)

(58)

(59)
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 2 2
1 1 24 4

t k k t k kr r r rk k
a d a k k d k a

t k t k

q q
r Q r r r e C e 

 
    

 

               

, ,( ) ( )( )
, , ,

, ,

( ,Ω ) ( ,Ω ) ( ) .  

Designate the 2nd-LASS forward flux entering region k in direction Ωd  as  2
1, ( ,Ω )a k dr  . Using kr r   

in Eq. (60) yields 

 2 2
1 1 24

k
a k d a k a

t k

q
r Q C

   


( )
, , ,

,

( ,Ω ) ,  

or  

 2 2
1 1 24

k
a a k d a k

t k

q
C r Q

 


( )
, , ,

,

( ,Ω ) .  

Using Eq. (62) in Eq. (60) yields 

 

 

 

2 2
1 1 2

2 2
1 1 2

2
1 2

4 4

1
4 4

t k k

t k k

t k k

r rk k
a d a k k d k

t k t k

r rk
a k d a k

t k

r rk k
a k k d

t k t k

q q
r Q r r r e

q
r Q e

q q
Q e r

 
 




 







 
 

 


 


              
      

 
    

,

,

,

( )( )
, , ,

, ,

( )( )
, , ,

,

( )( )
, ,

, ,

( ,Ω ) ( ,Ω ) ( )

( ,Ω )

( ,Ω )

 2
1

t k k

t k k

r r
k

r r
a k d

r r e

e r





 


 


     



,

,

( )

( )
,

( )

( ,Ω ).

 

 
The second source on the right side of Eq. (57) (subscript b) is a constant in region k. The solution 

can be written immediately by analogy with Eq. (33): 

 2 2 2
1 1 1

1
1 t k k t k kr r r r

b d b k b k d
t k

r Q e e r     


     
  

, ,( ) ( )( ) ( ) ( )
, , , ,

,

( ,Ω ) ( ,Ω ) .  

 
The boundary condition, given by applying Eq. (56) to Fig. 1, completes the solution for both 

 2
1, ( ,Ω )a dr  and  2

1, ( ,Ω )b dr : 
 2
1 0( ,Ω ) .max dr   

 
III.E. Specific Solutions of 2nd-LASS Forward Equations 
 
The equations of the 2nd-LASS include the same forward transport operator as Eq. (1) or the same 

adjoint transport operator as Eq. (3). Two of the forward equations [Eqs. (8) and (15)] have sources that 
include the 1st-LASS forward flux dr( ,Ω ) . The solution of these equations in region k is Eq. (63) with  

)()2(
,1 riia fQ   

for Eq. (8) and  
)()2(

,1 riia fNQ   

for Eq. (15). Note that Eq. (63) already includes the negative sign preceding these sources in Eqs. (8) 
and (15). 

 

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)
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Two of the forward equations [Eqs. (8) and (22)] have sources that include the source emission rate 
or atom density of isotope i, but not the 1st-LASS forward flux dr( ,Ω ) . The solution of these 

equations in region k is Eq. (64) with  
)()2(

,1 riib gqQ   

for Eq. (8) and  
)()2(

,1 riib gNQ   

for Eq. (22). 
 
The solution of Eq. (8) is the sum of Eqs. (63) and (64), using Eqs. (66) and (68): 

 

 

2
1 2

2
1

2
1

1
4 4

1
4

t k k t k k

t k k

t k k t k k

r r r rk k
i d i i k d k

t k t k

r r
i a k d

r r r ri i
i b k d

t k

q q
r f e r r r e

e r

q g
e e r

  
 






 



 

   
 

 


   


              



  


, ,

,

, ,

( ) ( )( )
,

, ,

( ) ( )
, ,

( ) ( ) ( )
, ,

,

( ,Ω ) (r) ( ,Ω ) ( )

( ,Ω )

(r)
( ,Ω ) .

 

The solution of Eq. (15) is Eq. (63), using Eq. (67): 

 2
1 2

2
1

1
4 4

t k k t k k

m

t k k

m

r r r rk k
i N d i i k d k

t k t k

r r

i N k d

q q
r N f e r r r e

e r

 
 



 



   
  

 
 

              



, ,

,

( ) ( )( )
,

, ,

( ) ( )
,

( ,Ω ) (r) ( ,Ω ) ( )

( ,Ω ) .

 

The solution of Eq. (22) is Eq. (64), using Eq. (69): 

 2 2
1 2 1 21 , ,( ) ( )( ) ( )

, ,
,

(r)
( ,Ω ) ( ,Ω ) .t k k t k k

m m

r r r ri i
i N d i N k d

t k

N g
r e e r     

    


 

Note the importance of retaining 2
1 i a k dr 
( )
, , ( ,Ω )  and 2

1
( )
, , ( ,Ω )i b k dr   in Eq. (70) and the unimportance of 

doing so in Eqs. (71) and (72). 
 

III.F. 2nd LASS Adjoint Equation 
 
Equations (10) and (17) may be written  

               2 2 12
2 2 2t Q       ( )Ω r,Ω r r,Ω r r,Ω ,  

with boundary condition 
   2
2 , 0, , 0.s s V      r Ω r Ω n  

We solve Eq. (73) along a particular ray from rd to rmax in material region k (see Fig. 1). Also, we 
recognize that particles are traveling in the negative direction, though we solve Eq. (73) in the forward 
direction. In this case, Eq. (73) becomes (for the subset of angles Ωd ) 

 
   

2
2 122

2 2 1d
t k d k d

r
r Q r k K

r


 


     


( )

, ,

( ,Ω )
( ,Ω ) ( ,Ω ), , , ,  

where r is the distance along the ray in direction dΩ . The 1st-LASS adjoint flux    1 r,Ω  along the 

ray within region k is Eq. (39). 
 

Using Eq. (39) in Eq. (75) and using the integrating factor , ( )t k kr re    yields 

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)
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    2 12
2 2

, ( ) ( )
,( ,Ω ) ( ,Ω ) .t k kr r

d k k de r Q r
r

  



 


 

Clearly, the distance kr r   depends on the angles θ and ω defining Ωd  (see Fig. 1), so the functional 

dependence is suppressed. Integrating Eq. (76) yields  
   

 

2 12
2 2

12
2

, ( ) ( )
,

( )
,

( ,Ω ) ( ,Ω )

( ,Ω )( ) .

t k kr r

d k k d

k k d k

e r Q r dr C

Q r r r C

 



 


 

  

   


 

Dividing through by the integrating factor yields 
   2 12
2 2

, ,( ) ( )( )
,( ,Ω ) ( ,Ω )( ) .t k k t k kr r r r

d k k d kr Q r r r e Ce      
      

Designate the 2nd-LASS adjoint flux entering region k in direction dΩ  as  2
2 ( ,Ω )k dr  . Using kr r   

in Eq. (78) yields 
 2
2 ( ,Ω ) .k dr C    

Using Eq. (79) in Eq. (78) yields 

 2 2 1
2 2

2
2

t k k

t k k

r r

d k k k d

r r

k d

r Q r r e r

e r

 







 
 

 


  



,

,

( )( ) ( ) ( )
,

( ) ( )

( ,Ω ) ( ) ( ,Ω )

( ,Ω ) .
 

The boundary condition, given by applying Eq. (74) to Fig. 1, completes the solution: 
 2
2 0K dr  ( ,Ω ) .  

 
III.G. Specific Solutions of 2nd-LASS Adjoint Equations 
 
Two of the adjoint equations [Eqs. (10) and (17)] have sources that include the 1st-LASS adjoint 

flux. The solution of these equations in region k is Eq. (80) with  
)()2(

2 rii fQ   

for Eq. (10) and  
)()2(

2 rii fNQ   

for Eq. (17). Note that Eq. (80) already includes the negative sign preceding these sources in Eqs. (10) 
and (17). 

 
The solution of Eq. (10) is Eq. (80), using Eq. (82): 

 2 1 2
2 2

t k k t k kr r r r
i d i i k k d i k dr f r r e r e r       

     , ,( ) ( )( ) ( ) ( )
, ,( ,Ω ) (r) ( ) ( ,Ω ) ( ,Ω ) .  

The solution of Eq. (17) is Eq. (80), using Eq. (83): 

 2 1 2
2 2

t k k t k k

m m

r r r r
i N d i i k k d i N k dr N f r r e r e r      
       , ,( ) ( )( ) ( ) ( )

, ,( ,Ω ) (r) ( ) ( ,Ω ) ( ,Ω ) .  

Recall that 2
2 2 0( )

, ( ,Ω )
mi N dr    (Sec. IV.C of Ref. 2). 

 
IV. Inner Products of the 2nd-LASS 

 
The inner products are derived for ray-tracing of the 1st-LASS in Ref. 4. Figure 1 shows a ray with 

direction Ω  traversing an arbitrary geometry towards a detector located at rd. As noted in Sec. III, the 
angles that intersect rd are denoted Ωd . The following sections derive the inner products of the 2nd-

LASS. 
 

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)
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IV.A. Inner Products of 2

2
( ) ( ,Ω)r  

 
The second-order sensitivities require the volume and angle integral of 2

2 i r ( )
, ( ,Ω)  and 2

2 mi N r 
( )
, ( ,Ω)  

[Eqs. (12), (14), (19), and (21)]. Denote these as 2
24

dV d r


  ( )Ω ( ,Ω) . They will be computed by ray-

tracing in direction dΩ  towards the detector point:  

1

2 2
2 24 2

dr

d d dr
dV d r d dr r

 
 



    ( ) ( )

(Ω )
Ω ( ,Ω) Ω Ω n ( ,Ω ) .  

The integral over dΩ  is only over outgoing angles. The 2nd-LASS adjoints are either nonzero only along 

rays in direction dΩ , or they are zero everywhere; therefore, the arguments on the right side of Eq. (86) 

are dΩ .  

 
The integral is the sum over regions: 

 

2 2
2 24 2

1

2
22

1

1

2
22

1

k

k

k

k

t k k

k t k k

k

K r

d d dr
k

K r

d d kr
k

r r

k k d

K r r r

d d k dr
k

dV d r d dr r

d dr Q

r r e r

d dr e r

 





 















 







 
 

 




 

 

  

 

   

  

  

,

,

( ) ( )

( )
,

( ) ( )

( ) ( )

Ω ( ,Ω) Ω Ω n ( ,Ω )

Ω Ω n

( ) ( ,Ω )

Ω Ω n ( ,Ω ) ,

 

where 2
2
( )
,kQ  is Eq. (82) or (83) if isotope i is present in region k and 0 if it is not. Integrating in direction 

dΩ  towards the detector point causes kr r   in Eqs. (84) and (85) to change sign to kr r  . The first 

integral along the ray in Eq. (87) is 

 2 1 2 1
2 2 2 2

1 1 ,

, ( ) ,( ) ( ) ( ) ( )
, ,

,

( )
( ) ( ,Ω ) ( ,Ω ) .

t k k
k t k k

k

d
r r r t k k

k k k d k k dr
t k

d e
dr Q r r e r Q r  




 

  

  
  

  

The second integral along the ray in Eq. (87) is 

2 2
2 2

1 ,

, ( ) ( ) ( )

,

( ,Ω ) ( ,Ω ) .
t k k

k t k k

k

d
r r r

k d k dr
t k

e
dr e r r  




 

 




  

Adding Eqs. (88) and (89), Eq. (87) becomes 

2 2 1
2 2 24 2

1

2
2

1 1

1

t k k

k

t k k

dK
t k k

d d k k dV
k t k

d

k d
t k

d e
dV d r d Q r

e
r

 
 












      
   

  
,

,

,( ) ( ) ( )
,

,

( )

,

( )
Ω ( ,Ω) Ω Ω n ( ,Ω )

( ,Ω ) .

 

The remaining integral on the right side of Eq. (90) is evaluated using numerical quadrature. 
  

(86)

(87)

(88)

(89)

(90)
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IV.B. Inner Products of 2 1

1
( ) ( )( ,Ω) ( ,Ω)r r   

 
The second-order sensitivities also require the volume and angle integral of 2 1

1 i r r ( ) ( )
, ( ,Ω) ( ,Ω) , 

2 1
1 mi N r r  ( ) ( )
, ( ,Ω) ( ,Ω) , and 2 1

1 2 mi N r r  ( ) ( )
, ( ,Ω) ( ,Ω)  [Eqs. (12), (13), (19), (20), (24), and (25)]. 

These integrals have the same form. Because the 1st-LASS adjoint is only nonzero along dΩ , these 

products are only nonzero along dΩ , so these integrals are evaluated using ray-tracing. For the 
2

1
( )
, ( ,Ω )a dr  component [Eq. (63)], ray-tracing in direction dΩ  towards the detector point, it is 

 

2 1
14

2
1 22

1

1

2

1
4

4

k t k k

k

t k k t k k

k t k

k

a
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d d a kr

k t k

r r r rk
k d k k d

t k

r r r
d d r

dV d r r

q
d dr Q e

q
r r r e e r

d dr e






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

 


 



 




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
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  
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 
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          

 

 

  

 

,

, ,

,

( ) ( )
,

( )( )
, ,

,

( ) ( ) ( )

,

(

Ω ( ,Ω) ( ,Ω)

Ω Ω n

( ,Ω ) ( ) ( ,Ω )

Ω Ω n 2 1
1

1

k t k k

K
r r

a k d k d
k

r e r   
 


 ,) ( )( ) ( )

, ( ,Ω ) ( ,Ω ) ,

 

where 2
1
( )
, ,a kQ  is Eq. (66) or (67) if isotope i is present in region k and 0 if it is not. Equation (91) reduces 

to 

 

2 1
14

2 1
1 22

1

2 1
12

1

2

4

4

k t k k t k k

k

k t k k

k

a

K r d r rk
d d a k k dr

k t k

K r dk
d d a k k d k k dr

k t k

d

dV d r r

q
d dr Q e e r

q
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d


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



 
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
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

 







  





  



 

 


 
      



 

 

 

, ,

,

( ) ( )
,

( )( ) ( )
, ,

,

( ) ( )
, ,

,

Ω ( ,Ω) ( ,Ω)

Ω Ω n ( ,Ω )

Ω Ω n ( ,Ω ) ( ) ( ,Ω )

Ω 2 1
1

1

k t k k

k

K r d

d a k d k dr
k

dr e r r 




 



  , ( ) ( )
,Ω n ( ,Ω ) ( ,Ω ) .

 

The first integral along the ray in Eq. (92) is 

 2 1
1 2

2 1
1 2

4

1

4

k t k k t k k

k

t k k

t k k

r d r rk
a k k dr

t k

d
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a k k k d
t k t k

q
dr Q e e r

q e
Q d e r







 



  

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



 


 
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 , ,

,

,

( )( ) ( )
, ,

,

( ) ( )
, ,

, ,

( ,Ω )

( ,Ω ) .

 

The second integral along the ray in Eq. (92) is 

2 1
1

2 2 1
1

4

1

4 2

k t k k

k

t k k

r dk
a k k d k k dr

t k
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 
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 





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
 
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 
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 ,

,

( ) ( )
, ,

,

( ) ( )
, ,

,

( ,Ω ) ( ) ( ,Ω )
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(91)

(92)

(93)

(94)
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The third integral along the ray in Eq. (92) is the integrand times dk. Adding these and rearranging, 
Eq. (91) becomes 

 2 1 2
1 1 34 2

1

2 2 2 1
1 1

1 1
4

1

2 4

,

, ,

( ) ( ) ( )
, , , ,

,

( ) ( ) ( )
, , ,

,

Ω ( ,Ω) ( ,Ω) Ω Ω n

( ,Ω ) ( ,Ω ) ( ,Ω ) .

t k k

t k k t k k

K
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a d d a k t k k
k t k

d dk
a k k d k k a k d k d

t k

q
dV d r r d Q d e

q
Q r d e d e r r

 
 
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          

  
 

 

For the 2
1
( )
, ( ,Ω )b dr  component [Eq. (64)], the integral is 
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Equation (96) reduces to 
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The first integral along the ray in Eq. (97) is 

 2 1 2 1
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The second integral along the ray in Eq. (97) is the integrand times dk. Adding these and rearranging, 
Eq. (96) becomes 
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The remaining integrals on the right sides of Eqs. (95) and (99) are evaluated using numerical 
quadrature. 

 
IV.C. Inner Products of 2

2
( ) ( ,Ω) ( ,Ω)r r   

 
Finally, the second-order sensitivities also require the volume and angle integral of 

2
2 i r r ( )

, ( ,Ω) ( ,Ω)  and 2
2 mi N r r  ( )

, ( ,Ω) ( ,Ω)  [Eqs. (12), (13), (19), and (20)]. These integrals have the 

same form. Because the 2nd-LASS adjoint is only nonzero along dΩ , these products are only nonzero 

along dΩ , so these integrals are evaluated using ray-tracing. The integral is 

(95)
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where 2
2
( )
,kQ  is Eq. (82) or (83) if isotope i is present in region k and 0 if it is not. Equation (100) reduces 

to  
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The first integral along the ray in Eq. (101) is  
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The second integral along the ray in Eq. (101) is  
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The third integral along the ray in Eq. (101) is  
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The fourth integral along the ray in Eq. (101) is the integrand times dk. Adding these and rearranging, 
Eq. (101) becomes 
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The remaining integral on the right side of Eq. (105) is evaluated using numerical quadrature. 
 
V. Numerical Results for an Analytic Sphere 

 
The equations of Sec. IV were implemented in the SENSPG computer code, and the integrals were 

evaluated using the QUADPACK integration library.13 The homogeneous sphere with two isotopes that 
was described in Ref. 2 and solved there using PARTISN was solved using ray-tracing. The SENSPG 
input file is listed in the appendix. 

 
Material density derivatives are obtained from the isotopic density results using the chain rule: 
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as in the PARTISN results of Sec. VII.E of Ref. 2. These density derivatives are constant-volume partial 
derivatives.7 Mixed derivatives involving the mass density are obtained similarly. 
 

All of the ray-trace inner products are identical to the analytic derivatives of Sec. VII.C of Ref. 2 to 
the number of digits shown there, except that 2

2  L  and 1
2 qL    each differ in the last digit 

from the values shown in Table VII of Ref. 2.  
 
Reference 2 did not consider the sensitivity of the leakage to interface locations. Preparing for future 

work, we will do so here. The derivative of the total leakage with respect to the radius of the sphere, a, is 

 21 12
1 ,aq N aL

e
a

  
 

 
 

 

where q1 and N1 are the emission rate of the gamma-ray line from isotope 1 and the atom density of 
isotope 1, respectively. Using the parameters for the sphere given in Ref. 2, Eq. (108) evaluates to 
5.700528 × 104 γ/s/cm. The adjoint-based formula, Eq. (39) of Ref. 14, when evaluated using ray-
tracing,6 yields the same result.  

(105)

(106)

(107)

(108)
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VI. Numerical Results for a Two-Region Slab 

 
In preparation for an analytic benchmark, a two-region slab problem was done using ray-tracing. The 

slab is shown in Figure 3. The left region, with a thickness t1 = 4 cm, represents uranium metal enriched 
to 20 wt% 235U. Its density is 18.8 g/cm3. The right region, with a thickness t2 = 6 cm, represents natural 
uranium dioxide, UO2, at a density of 10 g/cm3. The quantity of interest is the leakage (partial current 
density) of the 1.001-MeV 238U line from the right side of the slab. Parameters of the slab are given in 
Table I. Microscopic photon cross sections at 1.001 MeV and the 1.001-MeV line emission rate are 
given in Table II. The cross sections were obtained from the MCPLIB04 ACE-formatted photon cross-
section library, which is distributed with MCNP, and do not contain coherent scattering. The source 
emission rate is from Gunnick.15 The total macroscopic cross sections Σ1 and Σ2 and the total source rate 
densities Q1 and Q2 shown on Table I are computed using the data of Table II. The isotopic number 
densities are given in Table III. The SENSPG input file is listed in the appendix. 

 
 

 
 

 

 

Figure 3. Two-region slab.  

Table I. Slab Material Parameters. 
Parameter Value 
Material 1 235U, 20 wt%; 238U, 80 wt% 

ρ1 18.8 g/cm3 
Σ1 1.415651053 /cm
Q1 6.137765449 × 103 γ/cm3/s 
t1 4 cm 

Material 2 

235U, 0.6267397832 wt%; 
238U, 87.52600761 wt%; 
16O, 11.84725261 wt% 

ρ2 10 g/cm3 
Σ2 0.7374702915 /cm 
Q2 5.357853445 × 103 γ/cm3/s 
t2 6 cm 
L 302.60662 γ/s 

  
 

Table II. Isotope Parameters. 

Isotope Cross section, σ (b) 
Source emission rate, q 

[γ/(1024 atoms)/s] 
235U 29.69028616189 0. 
238U 29.69028616189 4.033 × 104  
16O 1.688362446543 0. 

   
 

4 cm 6 cm

Material 1, 20 wt% 
enriched U metal 

Material 2,  
(nat)UO2 Detector 
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First-order sensitivities are presented in Tables IV and V. Second-order sensitivities are presented in 
Tables VI through IX. These sensitivities compare very well with those computed using PARTISN with 
S2048 quadrature. Only a few differences are greater than 0.002% (in magnitude) and none are greater 
than 0.03% (in magnitude). Units of the sensitivities are suppressed; they correspond to those used in 
Tables I through III. 

 

 

 

Table III. Isotope Densities. 
Material Isotope Density (atom/b·cm) 

1 235U 9.633468185116 × 10–3 
 238U 3.804714511001 × 10–2 
2 235U 1.605765362130 × 10–4 
 238U 2.214172016178 × 10–2 
 16O 4.460459339467 × 10–2 
   

 

Table IV. First-Order Sensitivities (Absolute) of the Leakage to Isotopic Parameters. 
Isotope N σ q 

235U (mat. 1) –1.89732E+01(a) –6.15615E-03 0.00000E+00 
238U (mat. 1) 5.08497E+00 –2.43136E-02 2.26964E-05 
235U (mat. 2) –1.21237E+04 –6.55696E-02 0.00000E+00 
238U (mat. 2) 1.50178E+03 –9.04132E+00 7.48057E-03 

16O –6.89423E+02 –1.82138E+01 0.00000E+00 
    

(a) For example, this number is the derivative of the leakage with respect to the 235U 
number density in material 1. 

Table V. First-Order Sensitivities (Absolute) of the Leakage to Densities and Surface Locations. 
Parameter Sensitivity 

ρ1 5.68661E-04
ρ2 5.53732E-02
r0 –2.67271E-03
r1 –8.96160E-02
r2 9.22887E-02
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Table VI. Second-Order Sensitivities (Absolute) of the Leakage to  
Atom Densities and Isotopic Parameters. 

Parameter Isotope N σ q 
235U N 235U (mat. 1) 7.66964E+02 –3.90185E-01 0.00000E+00 

(mat. 1) 238U (mat. 1) 2.68287E+02 9.82839E-01 –4.70449E-04 
 235U (mat. 2) 3.88136E+03 2.09919E-02 0.00000E+00 
 238U (mat. 2) 3.88136E+03 2.89455E+00 0.00000E+00 
 16O 2.20717E+02 5.83108E+00(a) 0.00000E+00 

238U N 235U (mat. 1) 2.68287E+02 8.70499E-02 0.00000E+00 
(mat. 1) 238U (mat. 1) –2.30390E+02 –2.95237E-01 1.26084E-04 

 235U (mat. 2) –1.03705E+03 –5.60874E-03 0.00000E+00 
 238U (mat. 2) –1.03705E+03 –7.73384E-01 0.00000E+00 
 16O –5.89725E+01 –1.55798E+00 0.00000E+00 

235U N 235U (mat. 1) 3.88136E+03 1.25937E+00 0.00000E+00 
(mat. 2) 238U (mat. 1) –1.03705E+03 4.97383E+00 –4.64000E-03 

 235U (mat. 2) 9.56490E+05 –4.03166E+02 0.00000E+00 
 238U (mat. 2) 4.17392E+05 7.13308E+02 –2.95972E-01 
 16O 5.43916E+04 1.43696E+03 0.00000E+00 

238U N 235U (mat. 1) 3.88136E+03 1.25937E+00 0.00000E+00 
(mat. 2) 238U (mat. 1) –1.03705E+03 4.97383E+00 –4.64000E-03 

 235U (mat. 2) 4.17392E+05 2.25742E+00 0.00000E+00 
 238U (mat. 2) –1.21706E+05 –9.70660E+01 4.18773E-02 
 16O 2.37353E+04 6.27060E+02 0.00000E+00 

16O N 235U (mat. 1) 2.20717E+02 7.16148E-02 0.00000E+00 
 238U (mat. 1) –5.89725E+01 2.82841E-01 –2.63857E-04 
 235U (mat. 2) 5.43916E+04 2.94171E-01 0.00000E+00 
 238U (mat. 2) 2.37353E+04 4.05629E+01 –1.68307E-02 
 16O 3.09302E+03 –3.26625E+02 0.00000E+00 
     

(a) For example, this number is the second derivative of the leakage with respect to the 235U 
number density in material 1 and the 16O cross section. 
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Table VII. Second-Order Sensitivities (Absolute) of the Leakage to  
Microscopic Cross Sections and Isotopic Parameters. 

Parameter Isotope N σ q 
235U σ 235U (mat. 1) –3.90185E-01 8.07442E-05 0.00000E+00 

(mat. 1) 238U (mat. 1) 8.70499E-02 3.18897E-04 –1.52645E-07(a) 
 235U (mat. 2) 1.25937E+00 6.81113E-06 0.00000E+00 
 238U (mat. 2) 1.25937E+00 9.39180E-04 0.00000E+00 
 16O 7.16148E-02 1.89198E-03 0.00000E+00 

238U  σ 235U (mat. 1) 9.82839E-01 3.18897E-04 0.00000E+00 
(mat. 1) 238U (mat. 1) –2.95237E-01 1.25948E-03 –6.02866E-07 

 235U (mat. 2) 4.97383E+00 2.69004E-05 0.00000E+00 
 238U (mat. 2) 4.97383E+00 3.70927E-03 0.00000E+00 
 16O 2.82841E-01 7.47234E-03 0.00000E+00 

235U σ 235U (mat. 1) 2.09919E-02 6.81113E-06 0.00000E+00 
(mat. 2) 238U (mat. 1) –5.60874E-03 2.69004E-05 –2.50949E-08 

 235U (mat. 2) –4.03166E+02 2.79779E-05 0.00000E+00 
 238U (mat. 2) 2.25742E+00 3.85785E-03 –1.60073E-06 
 16O 2.94171E-01 7.77165E-03 0.00000E+00 

238U σ 235U (mat. 1) 2.89455E+00 9.39180E-04 0.00000E+00 
(mat. 2) 238U (mat. 1) –7.73384E-01 3.70927E-03 –3.46031E-06 

 235U (mat. 2) 7.13308E+02 3.85785E-03 0.00000E+00 
 238U (mat. 2) –9.70660E+01 5.31954E-01 –2.20723E-04 
 16O 4.05629E+01 1.07162E+00 0.00000E+00 

16O σ 235U (mat. 1) 5.83108E+00 1.89198E-03 0.00000E+00 
 238U (mat. 1) –1.55798E+00 7.47234E-03 –6.97081E-06 
 235U (mat. 2) 1.43696E+03 7.77165E-03 0.00000E+00 
 238U (mat. 2) 6.27060E+02 1.07162E+00 –4.44648E-04 
 16O –3.26625E+02 2.15879E+00 0.00000E+00 
     

(a) For example, this number is the second derivative of the leakage with respect to the 235U 
cross section in material 1 and the 238U source emission rate for the 1.001-MeV line. 

Table VIII. Second-Order Sensitivities (Absolute) of the Leakage to  
Source Emission Rates and Isotopic Parameters. 

Parameter Isotope N σ q 
238U q 235U (mat. 1) –4.70449E-04 –1.52645E-07(a) 0.00000E+00 

(mat. 1) 238U (mat. 1) 1.26084E-04 –6.02866E-07 0.00000E+00 
 235U (mat. 2) –4.64000E-03 –2.50949E-08 0.00000E+00 
 238U (mat. 2) –4.64000E-03 –3.46031E-06 0.00000E+00 
 16O –2.63857E-04 –6.97081E-06 0.00000E+00 

238U q 235U (mat. 1) 0.00000E+00 0.00000E+00 0.00000E+00 
(mat. 2) 238U (mat. 1) 0.00000E+00 0.00000E+00 0.00000E+00 

 235U (mat. 2) –2.95972E-01 –1.60073E-06 0.00000E+00 
 238U (mat. 2) 4.18773E-02 –2.20723E-04 0.00000E+00 
 16O –1.68307E-02 –4.44648E-04 0.00000E+00 
     

(a) For example, this number is the second derivative of the leakage with respect to the 238U 
source emission rate for the 1.001-MeV line and the 235U cross section in material 1. Note 
that it is the same as the number footnoted in Table VII. 
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VII. Summary and Future Work 

 
In this memo, the equations derived in Ref. 1 for second-order sensitivities of a detector response to 

uncollided particles are solved and the inner products are evaluated using ray-tracing. Results for a 
homogeneous sphere are in excellent agreement with analytic results as well as PARTISN results 
presented in Ref. 2. Results for a two-region slab are presented in anticipation of a future analytic 
solution. The detector response is the partial current density at a point on the surface. For the sphere, this 
can be integrated over the surface to yield the total leakage. For the slab, the point is on the “right” 
surface and it yields the total leakage through the right surface.  

 
Also in this memo, analytic formulas for the total leakage from a homogeneous sphere4,5 and the 

scalar flux at a point on the surface of a homogeneous sphere,12 which are derived in different ways in 
the literature, are derived using ray-tracing.  

 
In the future, the SENSPG code will be extended to compute second-order sensitivities of interface 

locations, including mixed partial derivatives of interface locations and the isotopic quantities (number 
density, cross section, and source emission rate). 
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Table IX. Second-Order Sensitivities (Absolute) of the Leakage to  
Material Densities and Isotopic Parameters. 

Parameter ρ1 ρ2 
235U N (mat. 1) 9.35962E-01 9.64081E+00 
238U N (mat. 1) –3.28783E-01 –2.57589E+00 
235U N (mat. 2) –1.09878E-01(a) 1.18215E+03 
238U N (mat. 2) –1.09878E-01 –1.56906E+02 

16O N –6.24832E-03 6.72238E+01 
235U σ (mat. 1) –2.37678E-05 3.12811E-03 
238U σ (mat. 1) –9.38703E-05 1.23544E-02 
235U σ (mat. 2) –5.94264E-07 –1.63448E-04 
238U σ (mat. 2) –8.19425E-05 –2.25377E-02 

16O σ –1.65073E-04 –4.54023E-02 
235U q (mat. 1) 0.00000E+00 0.00000E+00 
238U q (mat. 1) 1.41002E-08 –1.15252E-05 
235U q (mat. 2) 0.00000E+00 0.00000E+00 
238U q (mat. 2) 0.00000E+00 1.28982E-05 

16O q 0.00000E+00 0.00000E+00 
ρ1

 –1.85783E-04 –2.72924E-04 
ρ2

 –2.72924E-04 –2.85848E-02 
   

(a) For example, this number is the second derivative of the leakage with respect to the 
235U atom density in material 2 and the mass density of material 1.  
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APPENDIX A 
SENSPG INPUT FILES 
 
SENSPG Input File for Sec. V 
 
simple sphere 
sphere ptflux 
mendf71x 
1 / no of materials 
1 94239 0.94        94240 0.06        / 
15.8      / densities 
1 / no of shells 
 3.794         / radii 
 1            / material nos 
 1          / index of coarse mesh to use for reaction rates 
 0          / number of reaction-rate ratios 

 
SENSPG Input File for Sec. VI 
 
two-region slab 
slab ptflux 
mendf71x 
2 / no of materials  
1 92235 0.20        92238 0.80        /  
2 92235 6.267397832E-03 92238 8.752600761E-01  8016 1.184725261E-01 / 
18.8  10. / densities 
2 / no of regions  
0.  4.   10.      / interface locations 
    1     2       / material nos 
 1          / index of coarse mesh to use for reaction rates 
 0          / number of reaction-rate ratios 
 


